Chapter 4*
Lateral Loads

1. Description of the Problem

a. Dedgn philosophy. Deep foundations must often
support subgtantia laterd loads as well as axia loads. While
axialy loaded, deep foundation dements may be adequately
desgned by smple gatismethods, design methodology for lateral
loads is more complex. The solution must ensure tha
equilibrium and soil-gructure-interation  compatability are
satisfied. Nonlinear s0il response complicates the solution.
Batter piles are included in pile groups to improve the laterd
capadity when verticd piles alone are not sufficient to support the
loads.

b. Cause of lateral loads. Some causes of lateral loads are
wind forces on towers, buildings, bridges and large Sgns, the
centripetal force from vehicular traffic on curved highway
bridges, force of water flowing againg the substructure of
bridges, lateral seismic forces from earthquakes, and backfill
loads behind walls.

¢. Factorsinfluencing behavior. The behavior of laterdly
loaded degp foundations depends on giffness of the pile and sail,
mobilization of resistance in the surrounding soil, boundary
conditions (fixity a ends of deep foundation elements), and
duration and frequency of loading.

2. Nonlinear Pile and p-y Model for Soil.

a. General concept. The mode shown in Figure 4-1 is
emphasized in this document. Theloading on the pileis generd
for the two-dimensond case (no torson or out-of-plane
bending). The horizontd lines across the pile are intended to
show that it is made up of different sections, for example, sed
pipe could be used with the wdl thickness varied dong the
length. The difference-equation method is employed for the
solution of the beam-column equation to dlow the different
vauesof bending gtiffnessto be addressed. Also, itispossible,
but not frequently necessary, to vary the bending stiffness with
bending moment that is computed during interation

b. Axial load. Anaxia loadisindicated and is considered
in the solution with respect to its effect on bending and not in
regard to computing the required length to support agiven axia

Yportions of this chapter were abstracted from the writings
of Dr. L. C. Reese and his colleagues, with the permission
of Dr. Reese,

El 02C097
01 Jul 97

load. Asshown later, the computational procedure alowsthe
detrmination of the axial load a which the pilewill buckle.

c. Soil representation. The soil around the pile is
replaced by a set of mechanisms indicating that the soil
resigtance p is a nonlinear function of pile deflectiony. The
mechanisms, and the corresponding curves that represent their
behavior, are widely spaced but are considered to be very close
intheandyss Asmay beseenin Figure4-1, thep-y curvesare
fully nonlinear with respect to distance x along the pileand pile
deflectiony. The curve for x = x, isdrawn to indicate that the
pile may deflect afinite distance with no soil resistance. The
curve at X = X, is drawn to show that the sail is deflection-
oftening. Thereis no reasonable limit to the variations that can
be employed in representing the response of the soil to the lateral
deflection of apile.

d. Thep-y curve method. The p-y method is extremely
versdttileand providesapractical meansfor design. The method
wassuggested over 30 years ago (M cCdland and Focht 1958).
Two devd opments during the 1950's made the method possible:
the digitd computer for solving the problem of the nonlinear,
fourth-order differential equation for the beam-column; and the
remote-reading strain gauge for use in obtaining soil-response
(p-y) curvesfrom fidd experiments. The method has been used
by the petroleum industry in the design of pile-supported
plaformsand extended to the design of onshore foundations as,
for example by publications of the Federd Highway
Adminigration (USA) (Reese 1984).

(1) Definition of pandy. The definition of the quantities
p andy asused hereisnecessary because other approaches have
been used. The sketch in Figure 4-2a shows a uniform
distribution of unit stresses normd to the wall of a cylindrical
pile. Thisdistribution is correct for the case of a pile that has
beeningalled without bending. If the pileis caused to deflect a
digancey (exaggerated in the sketch for clarity), the distribution
of unit stresses would be similar to that shown in Figure 4-2b.
The stresses would have decreased on the back side of the pile
and increased on the front sde. Both norma and a shearing
stress component may developed dong the perimeter of the
cross section. Integration of the unit stresses will result in the
quanity p which acts oppoditein directiontoy. Thedimensons
of pareload per unit length along the pile. The definitionsof p
and y that are presented are convenient in the solution of the
differential equation and are consigtent with the quantities used
in the solution of the ordinary beam equation.

(2 Naureof soil reponse. The manner in which the soil
responds to the lateral deflection of a pile can be examined by
examined by congdering the pipe pile shown
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Figure 4-1. Model of pile under lateral loading with  p-y curves

in Figure4-3. Two dicesof soil areindicated; the dement A
is near the ground surface and the dement B is severd
diameters below the ground surface. Condderation will be
given here to the manner in which those two dements of ol
reect asthe pile deflects under an applied lateral load. Figure 4-
4 showsap-y curvethat is conceptud in nature. The curveis
plotted in thefirgt quadrant for convenience and only one branch
isshown. The curve properly belongsin the second and fourth
quadrants because the s0il response acts in oppostion to the
deflection. Thebranch of the p-y curves O-ais representative of
the elastic action of the soil; the deflection at point a may be
amdl. Thebranch a-b isthetrangtion portion of the curve. At
point b the ultimate soil resistance is reached. The following
paragraphswill ded with the ultimate soil resistance.

(@ Ultimate resgtanceto laterd movement. With regard
tothe ultimate resistance a element A in Figure 4-3, Figure 4-5
shows awedge of soil that is moved up and away from apile
Theground surfaceis represented by the plane ABCD, and soil
in contact with the pile is represented by the surface CDEF. If
thepileismoved in the direction indicated, failure of the soil in
shear will occur on the planes ADE, BCF, and AEFB. The
horizonta force F,againgt the pile can be computed by summing
thehorizontal components of the forces on the diding surfaces,
taking into account ote gravity force on the wedge of soil. For a
givenvaue of H, it isassumed that the vaue of the horizontdl
forceonthepileis
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(a) Before bending

(b} After bending

Figure 4-2. Distribution of unit stresses against a pile before and after lateral deflection

F,;. 1f a second computation is made with the depth of the wedge

increased by AH, the horizontal force will be F,, The value of p,
for the depth z where z is equal approximately to (2H +AH)/2
can be computed: (p, ),= (F,;- F,;) /AH.

(b) Resistance at ground level. At the ground surface, the
value of p, for sand must be zero because the weight of the wedge
1s zero and the forces on the sliding surfaces will be zero. At the
ground surface for clay, on the other hand, the values of p, will be
larger than zero because the cohesion of the clay, which is
independent of the overburden stress, will generate a horizontal
force.

(c¢) Resistance below ground level. A plan view of a pile at
several diameters below the ground surface,corresponding to the
element at B in Figure 4-3, is shown in Figure 4-6. The potential
failure surfaces that are shown are indicative of plane-strain
failure, while the ultimate resistance p, cannot be determined
precisely, elementary concepts can be used to develop
approximate expressions.

(3) Effects of loading . As will be shown in detail in the next
sections, the soil response can be affected by the way the load is
applied to a pile. Recommendations are given herein for the cases

where the load 1s short-term (static) or is repeated (cyclic). The
latter case is frequently encountered in design. Loadings that are
sustained or dynamic (due to machinery or a seismic event) are
special cases; the methods of dealing with these types of loading
are not well developed and are not addressed herein. The cyclic
loading of sands also causes a reduced resistance in sands, but the
reduction is much less severe than experienced by clays.

(4) Presence of water. The presence of water will affect the
unit weight of the soil and will perhaps affect other properties to
some extent, however, water above the ground surface has a
pronounced effect on the response of clay soils, particularly stiff
clay. Cyclic loading has two types of deleterious effects on clays;
there is likely to be (1) strain softening due to repeated
deformations and (2) scour at the pile-soil interface. This latter
effect can be the most serious. If the deflection of the pile is
greater that at point a in Figure 4-4 or certainly if the deflection is
greater than that at point b, a space will open as the load is
released. The space will fill with water and the water will be
pushed upward, or through cracks in the clay, with the next cycle
of loading. The velocity of the water cxan be such that
considerable quantities of soil are washed ot the ground surface,
causing a significant loss in soil resistance.

4-3
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Figure 4-3. Pipe pile and soil elements

3. Development of p-y Curve for Soils

Detailed methods for obtaining p-y curves are presented in the
following paragraphs. Recommendations are given for clay and
sand, for static and cyclic loading, and for cases where the water
table is above or below the ground surface. As will be seen, the
soil properties that are needed for clay refer to undrained shear
strength; there are no provisions for dealing with soils having both
¢ and ¢ parameters.

a. p-y curves for soft clay. As noted earlier, there is a
significant influence of the presence of water above the ground
surface. If soft clay exists at the ground surface, it is obvious that
water must be present at or above the ground surface or the clay
would have become desiccated and stronger. If soft clay does not
exist at the ground surface but exists at some distance below the
ground surface, the deleterious effect of water moving in and out of
a gap at the interface of the pile and soil will not occur; therefore,
the p-y curves for clay above the ground surface should be used
(Welch and Reese 1972). The p-y curves presented here are for
soft clay, with water above the group

44

Soil Resistance, (F/L.)

Pile Deftection, {L)}

Figure 4-4. Conceptual p-y curve

surface, and the clay experienced the deteriorating effects noted
earlier.

(1) Field experiments. Field experiments using full-sized,
instrumented piles provide data from which p-y curves from static
and cyclic loading can be generated. Such experimental curves are
cotrelated with available theory to provide the basis to recommend
procedures for developing p-y curves.  Therefore, field
experiments with instrumented piles are essential to the
recommendations for p-y curves. Matlock (1970) performed
lateral load tests employing a steel-pipe pile that was 12.75 inches
in diameter and 42 feet long. It was driven into clays near Lake
Austin that had a shear strength of about 800 pounds per square
foot. The pile was recovered, taken to Sabine Pass, Texas, and
driven into clay with a shear strength that averaged about 300
pounds per square foot in the significant upper zone. The studies
carried out by Matlock led to the recommendations shown in the
following paragraphs.

(2) Recommendations for computing p-y curves. The
following procedure is for short-term static loading and is
illustrated in Figure 4-7a.

(a) Obtain the best possible estimate of the variation with depth
of undrained shear strength ¢ and submerged unit weight y’. Also
obtain the values of &, the strain corresponding to one-half the
maximum principal-stress difference. If no stress-strain curves are
available, typical values of €,, are given in Table 4-1.
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Figure 4-5. Wedge-type failure of surface soil

Table 4-1 p, =9ch “-2)
Representative Values of &, where
Consistency of Clay & . .

p, = ultimate soil resistance
Soft 0.020

x = depthfrom ground surface to p-y curve
Medium 0010
st 0,005 Yy’ = average effective unit weight from ground surface

to depth x
¢ = shear strength at depth x
(b) Compute the ultimate soil resistance per unit length of b = widthof pile
pile, using the smaller of the values given by equations below
/ J J = empirical dimensionless parameter
pu=[3+Y_x+_b_x]cb @1
¢
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Matlock (1970) stated that the value of J was determined 3
experimentally to be 0.5 for a soft clay and about 0.25 for a Yoo

medium clay. A value of 0.5 is frequently used forJ. The value
of p, 1s computed at each depth where a p-y curve is desired,
based on shear strength at that depth. A computer obtains values
of y and the corresponding p-values at close spacings; if hand
computations are being done, p-y curves should be computed at
depths to reflect the soil profile. If the soil is homogeneous, the
p-y curves should be obtained at close spacings near the ground
surface where the pile deflection is greater.

(¢) Compute the deflection, y,, at one-half the ultimate soil
resistance for the following equation:

) =25 ey (4-3)

(d) Points describing the p-y curve are now computed from
the following relationship.

L -5
Py ySO

) 0.333 “4-4)

{(b) Cyclic locading

Figure 4-7. Characteristic shapes of the p-y curves
for soft clay below the water table

The value of p remains constant beyond y = 8y;,.

(3) Procedure for cyclic loading. The following procedure
is for cyclic loading and is illustrated in Figure 4-7b.

(a) Construct the p-y curve in the same manner as for
short-term static loading for values of p less than 0.72p,,.

(b) Solve equations 4-1 and 4-2 simultaneously to find the
depth, x, , where the transition occurs from the wedge-type
failure to a flow-around failure. If the unit weight and shear
strength are constant in the upper zone, then
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If the unit weight and shear strength vary with depth, the value of

x, should be computed with the soil properties at the depth

where the p-y curve is desired.

(c) Ifthe depthtothe p-y curveis greater than or equal to
x,, then p is equal to 0.72p, from y = 3y, toy =15y,,.

(d) If the depth to the p-y curve is less than x, , then the
value of p decreases from 0.72p, at y = 3y, to the value given
by the following expression aty = 15y;,.

p =072 p (X) (4-6)
xr

The value of p remains constant beyond y = 15yy,.

(4) Recommended soil tests. For determining the values of
shear strength of the various layers of soil for which p-y curves
are to be constructed, Matlock (1970) recommended the
following tests in order of preference:

(a) Insituvane-shear tests with parallel sampling for soil
identification.

(b) Unconsolidated-undrained triaxial compression tests
having a confining stress equal to the overburden
pressure with ¢ being defined as half the total
maximum principal stress difference.

(¢) Miniature vane tests of samples in tubes.
(d) Unconfined compression tests.
b. p-y curves for stiff clay below the water table.

(1) Field experiments. Reese, Cox, and Koop (1975)
performed lateral load tests employing steel-pipe piles that were
24 inches in diameter and 50 feet long. The piles were driven
into stiff clay as a site near Manor, TX. The clay had an
undrained shear strength ranging from about 1 ton per square
foot at the ground surface to about 3 tons per square foot at a
depth of 12 feet. The studies that were carried out led to the
recommendations shown in the following paragraphs.

(2) Recommendations for computing p-y curves. The
following procedure is for short-term static loading and is
illustrated by Figure 4-8. The empirical parameters, A, and 4,
shown in Figure 4-9 and %, and £ shown in Table 4-2 were
determined from the results of the experiments.

(a) Obtain values for undrained soil shear strength ¢,
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soil submerged unit weight v’ and pile diameter b.

() Compute the average undrained soil shear strength c,
over the depth x.

(©) Compute the ultimate soil resistance per unit length of
pile using the smaller of the values given by the equation below

Py = 2¢,b + v'bx + 2.83 c,x 47
Py = 11 ¢b (4-8)

(d) Choose the appropriate values of the empirical
parameter 4, from Figure 4-9 for the particular nondimensional
depth.

(e) Establish the initial straight-line portion of the p-y
curve:

p = (kx)y (4-9)
Use the appropriate value of &, or &, from Table 4-2 for £.
() Compute the following:

Yso = Eob 4-10)

Use an appropriate value of &, from results of laboratory tests or,
in the absence of laboratory tests, from Table 4-3.

Table 4-2
Representative Values of k for Stiff Clays

Average Undrained Shear Strength’

ksf
Tisq ft
12 24 48
k, (Static) Ib/cu in. 500 1,000 2,000
k. (Static) Ibieu in. 200 400 800

! The average shear strength should be computed to a depth of five pile
diameters. It should be defined as half the total maximum principal stress
difference in an unconsolidated undrained triaxial test.

4-7
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Table 43
Representative Values of &, for Stiff Clays

= 0.5p (64,)% - 0411p_ - 0.75p (4-14)
p c s pC S

Average Undrained Shear Strength or
ksf
p. =p.(1225 /4 - 0754, - 0.411) @-15)
12 24 48 £ 2 :
Equation 4-15 should define the portion of the p-y curve from
£s (in/in.) 0.007 0.005 0.004

the point where y is equal to 184y, and for all larger values of
y (see following note).

(g) Establish the first parabolic portion of the p-y curve,
using the following equation and obtaining p, from equations 4-7
or4-8.

05
p =05p,| L
Ys0

@-11)

Equation 4-11 should define the portion of the p-y curve from
the point of the intersection with equation 4-9 to a point where
yis equal to 4, ys, (see note in step j).

(h) Establish the second parabolic portion of the p-y curve,

0.5 y - A ¥ 125
p=05p| L} -0555p| =% (“4-12)
Yso A5y

Equation 4-12 should define the portion of the p-y curve from
the point where y is equal to 4y, to a point where y is equal to
64,5, (see note in step j).

(1) Establish the next straight-line portion of the p-y curve,

p =05p (64,)°° - 0.411p,

(4-13)

0.0625
- ( ] p. (y - 6As}’50)
Yso

Equation 4-13 should define the portion of the p-y curve from
the point where y is equal to 64, y;,to a point where y is equal
to 184 y,, (see note in step j).

() Establish the final straight-line portion of the curve,

4-8

Note: The step-by-step procedure is outlined, and Figure 4-8 is
drawn, as if there is an intersection between equations 4-9 and
4-11. However, there may be no intersection of equation 4-9
with any of the other equations defining the p-y curve. If there
is no intersection, the equation should be employed that gives the
smallest value of p for any value of y.

(3) Procedure of cyclic loading. The following procedure
is for cyclic loading and is illustrated in Figure 4-10.

(a) Step ais same as for static case.
(b) Step bis same as for static case.
(¢) Step cis same as for static case.

(d) Choose the appropriate value of 4, from Figure 4-9 for
the particular nondimensional depth.

Compute the following:

¥, = 414y (4-16)
(e) Step e is same as for static case.

(® Step fis same as for static case.

(g) Establish the parabolic portion of the p-y curve,

y - 045y, >3

0.45y,

p=Apli - (4-17)

Equation 4-17 should define the portion of the p-y curve from
the point of the intersection with equation 4-9 to where y is
equal to 0.6y, (see note in step 1).
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Figure 4-8. Charactertistic shape of p-y curve for static loading in stiff clay below the water table

(h) Establish the next straight-line portion of the p-y curve,

0.085

50

p =0936 Ap, -

p.(y - 0.6y,) 4-18)

Equation 4-18 should define the portion of the p-y curve from the
point where y is equal to 0.6y, to the point where y is equal to 1.8y,
(see note in step h).
(1) Establish the final straight-line portion of the p-y curve,
0.102

p=09364p, -
Yso

P, @-19)

Equation 4-19 should define the portion of the p-y curve from the
point where y is equal to 1.8y, and for all larger values of y (see
following note).

Note: The step-by-step procedure is outlined, and Figure 4-10 is
drawn, as if there is an intersection between equations 4-9 and 4-
17. However, there may be no intersection of those two equations
and there may be no intersection of equation 4-9 with any of the
other equations defining the p-y curve. If there is no intersection,
the equation should be employed that gives the smallest value of p
for any value of .

(@) Recommended soil tests. Triaxial compression tests of the
unconsolidated-undrained type with confining pressures
conforming to the in situ total overburden pressures are
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illustrated in Figure 4-11.
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Figure 4-10. Characteristic shape of p-y curve for cyclic loading in stiff clay below the water
table
025
€,, from stress-strain curves. If no stress-strain curves are L o5 2 (4-20)
available, use a value from &, of 0.010 or 0.005 as given in Py Ys0

Table 4-1, the larger value being more conservative.

(b) Compute the ultimate soil resistance per unit length of
shaft, p,, using the smaller of the values given by equations 4-1
and 4-2. (In the use of equation 4-1, the shear strength is taken
as the average from the ground surface to the depth being
considered and J is taken as 0.5. The unit weight of the soil
should reflect the position of the water table.)

(¢) Compute the deflection, y,, at one-half the ultimate soil
resistance from equation 4-3.

(d) Points describing the p-y curve may be computed from
the relationship below.

(e) Beyond y = 16y, p is equal to p, for all values of y.

(3) Procedure for cyclic loading. The following procedure
is for cyclic loading and is illustrated in Figure 4-12.

(@) Determine the p-y curve for short-term static loading by
the procedure previously given.

(b) Determine the number of times the design lateral load
will be applied to the pile.

(c¢) For several values of p/p, , obtain the value of C, the

parameter describing the effect of repeated loading on
deformation, from a relationship developed by laboratory tests

4-11
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(Welch and Reese 1972), or in the absence of tests, from the

following equation.

Soil Resistance , p (Ib/in)

/P= Py

;
i
|
s
u
E
]
!
t
i
|
|

Deflection , y(in}

6y

Figure 4-11. Characteristic shape of p-y curve for static loading in stiff clay above the water table

C = 9.6( £)4 -2
Py

(d) At the value of p corresponding to the values of p/p,
selected in step ¢, compute new values of y for cyclic loading
from the following equation.

VY, =Y + Yo X CxlogN (4-22)
where
y, = deflection under N-cycles of load
y, =  deflection under short-term static load
v = deflection under short-term static load at one-half the
ultimate resistance
N = number of cycles of load application

(&) Define the soil response after N-cycles of load, using the

412

p-ycurve.

(4) Recommended soil tests. Triaxial compression
tests of the unconsolidated-undrained type with confining
stresses equal to the overburden pressures at the elevations from
which the samples were taken are recommended to determine
the shear strength. The value of €, should be taken as the strain
during the test corresponding to the stress equal to half the
maximumn total principal stress difference. The undrained shear
strength, c, should be defined as one-half the maximum total-
principal-stress difference. The unit weight of the soil must also
be determined.

d. py curves for sand. A major experimental program was
conducted on the behavior of laterally loaded piles in sand below
the water table. The results can be extended to sand above the
water table by making appropriate adjustments in the values of
the unit weight, depending on the position of the water table.

(1) Field experiments. An extensive series of tests were
performed as a site on Mustang Island, near Corpus Christi



(Cox, Reese, and Grubbs 1974). Two steel-pipe piles,
24 inches in diameter, were driven into sand in a manner to
simulate the driving of an open-ended pipe and were subjected
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to lateral oading. The embedded length of the piles was 69 feet.
One of the piles was subjected to short-
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Figure 4-12. Characteristic shape of p-y curve for cyclic loading in stiff clay above the water table

term loading and the other to repeated loading. The soil at the site
was a uniformly graded, fine sand with an angle of internal friction
of 39 degrees. The submerged unit weight was 66 pounds per
cubic foot. The water surface was maintained a few inches above
the mudline throughout the test program.

(2) Recommendations for computing p-y curves. The following
procedure is for short-term static loading and for cyclic loading and
1s illustrated in Figure 4-13 (Reese, Cox, and Koop 1974).

() Obtain values for the angle of intemal friction ¢, the soil unit
weight v, and pile diameter b.

(b) Make the following preliminary computations.

a=$;ﬁ:45 +-§3-;K,=0.4;and
2 2 (4-23)

K,= tan® (45 - %); K, = tan® (45 - %)

(c) Compute the ultimate soil resistance per unit length of pile
using the smaller of the values given by the equations below,
where x is equal to the depth below the ground surface.

Py = YbZ[S,(%) + Sz(%)z} (4-24)

Py = vb%%(%)] (4-25)
where

S, = (X, -K,) (4-26)

S, = (tan B) (K, o + K.[tandsin @

(seca + 1) - tana])

4-13
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Figure 4-13. Characteristic shape of a family of p-y curves for static and cyclic

loading in sand

S, = K’p(K, + K.tan ) - K, (4-28)

(d) The depth of transition x, can be found by equating the
expressions in equations 4-24 and 4-25, as follows:

(S5 - 8)

4-29
5, (4-29)

X,
b

The appropriate vy for the position of the water table should be
employed. Use equation 39 above, x, , and equation 40 below.
Itcan be seen that S, , S, , S; , ¥ / b are functions only of ¢ ;
therefore, the values shown in Table 4-4 can be computed.

() Select a depth at which a p-y curve is desired.

(f) Establish y, as 3b/80. Compute p by the following
equation:

414

p, = 4p, or p, =4.p, (4-30)
Use the appropriate value of Z; or :4: from Figure 4-14 for the
particular nondimensional depth and for either the static or
cyclic case. Use the appropriate equation for p,, equation 4-24
or 4-25 by referring to the computation in step d.

(g) Establish y,, as b/60. Compute,p by the following
equation:

p, =B,p, or p. =B.p, 4-31)

Use the appropriate value of B, or B, from Figure 4-15 for the
particular nondimensional depth, and for either the static or
cyclic case. Use the appropriate equation for p,. The two
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Table 4-4
Nondimensional Coefficients for p-y Curves for Sand
&, deg S, S, S; X, /b
250 2.05805 1.21808 15.68459 11.18690
26.0 2.17061 1.33495 17.68745 11.62351
270 228742 1.46177 19.95332 12.08526
28.0 240879 1.59947 22.52060 12.57407
290 2.53509 1.74906 25.43390 13.09204
30.0 2.66667 1.91170 28.74513 13.64147
310 2.80394 2.08866 3251489 14.22489
320 294733 228134 36.81400 14.84507
33.0 3.09733 2.49133 41.72552 15.50508
340 3.25442 2.72037 47.34702 16.20830
350 3.41918 297045 53.79347 16.95848
36.0 3.59222 3.24376 61.20067 17.75976
370 3.77421 3.54280 69.72852 18.61673
38.0 3.96586 3.87034 7957113 19.63452
39.0 4.16799 422054 90.956327 20.51883
40.0 438147 462396 104.14818 21.56704
straight-line portions of the p-y curve, beyond the point B
where y is equal to b/60, can now be established. m = Pu " Pm (4-34)
Ya 7 Vm
(b) Establish the initial straight-line portion of the p-y
curves, (b) Obtain the power of the parabolic section by,
p
p= (kx)y (4‘32) n =" (4-35)
m
ym
Use Tables 4-4 and 4-5 to select an appropriate value of & .
(c) Obtain the coefficient C as follows:
(i) Establish the parabolic section of the p-y curve, »
C = ”:In (4-36)
p=CyW (4-33) y"
(3) Parabolic section. Fit the parabola between points {(d) Determine point £ as
k and m as follows: o
yk = (=) nin-1 (4-37)
kx

(a) Get the slope of line between points m and u by,

4-15
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% >50, 4-088

Figure 4-14. Values of coefficients A_ and A
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Figure 4-15. Nondimensional coefficient B for soil
resistance versus depth

(e) Compute appropriate number of points on the parabola

by using equation 4-33.

4-16

Note: The step-by-step procedure is outlined, and Figure 4-

13 isdrawn, as if there is an intersection between the initial
straight-line portion of the p-y curve and the parabolic
portion of the curve at point k. However, in some instances
there may be no intersection with the parabola. Equation 4-
32 defines the p-y curve until there is an intersection with
another branch of the p-y curve or if no intersection occurs,
equation 4-32 defines the complete p-y curve. The soil-
response curves for other depths can be found repeating the
above steps for each desired depth.

(4) Recommended soil tests. Triaxial compression tests
are recommended for obtaining the angle of internal friction
of the sand. Confining pressures should be used which are
close or equal to those at the depths being considered in the
analysis. Tests must be performed to determine the unit
weight of the sand. In many instances, however, undisturbed
samples of sand cannot be obtained and the value of ¢ must
be obtained from correlations with static cone penetration
tests or from dynamic penetration tests (Table 4-4).

4. Analytical Method

The solution of the problem of the pile under lateral load
must satisfy two general conditions. The equations of
equilibrium must be solved and deflections and deformations
must be consistent and compatible. These two requirements
are fulfilled by finding a solution to the following differential
equation (Hetenyi 1946).

d?y

Er 4y pdY w0 -38)
dx* dx?
where
P, = axial load on the pile
y = lateral deflection of the pile at a point x along
the length of the pile
p = soil reaction per unit length

EI = flexural rigidity

w

distributed load along the length of the pile

Other beam formulae which are useful in the analysis are:

, ,
EI d_J; -y (4-39)
dx
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Table 4-5
Representative Values of k (Ib/cu in.) for Sand
Relative Density
below 35% 35% to 65% above 65%
Recommended k for
sand below water table 20 60 126
Recommended k for
sand above water table 25 90 225
2
8V oy (4-40) R, E, I, = flexural rigidity at point m
dx?
P, = axial load (causes no moment at x = 0)
and p
k, = =2 =soilmodulus at point
g (4-41) Im
dx
W, = distributed load at point m
where
Because the pile is divided into » increments, there are n +
V' = shear at point x along the length of the pile 1 points on the pile and »n + 1 of the above equations can be
written. The differential equation in difference form uses
M = bending moment of the pile deflections at two points above and at two points below the
point being considered.  Therefore, four imaginary
S = slope of the elastic curve deflections are introduced, two at the top of the pile and two

Solutions of the above equations can be made by use of the
computer program described in this  chapter.
Nondimensional methods, described later, can frequently be
used to obtain acceptable solutions but those methods are
much less versatile than the computer method. An
acceptable technique for getting solutions to the equations
governing the behavior of a laterally loaded pile is to
formulate the differential equation in difference terms. The
pile is divided into » increments of constant length 7 .
Equation 4-38 can be represented at point m along the

pile as follows:

V,~28m-1+y  (-2R__, - 2Rm
+ PJ’12) + ym(Rm-l * 4Rm
+ R”h~1 - 2th2 + kmh4)
+ ym+1(_2Rm - 2Rm+l

(4-42)

+Ph*) +y R +1-W =0

where

vy, =  deflection at point m

at the bottom. The introduction of four boundary conditions,
two at the bottom of the pile and two at the top, yields n + 5
simultaneous equations of a sort to be easily and quickly
solved by the digital computer. After solving the
simultaneous equations, shear moment and slope can be
found at all points along the pile by solving equations 4-39,
4-40, and 4-41. The soil resistance p can be found to be the
product &, y,, . It is obvious that an iterative solution must
be made with the computer because the values of the soil
moduli k,, are not known at the outset. Convergence to the
correct solution is judged to have been achieved when the
difference between the final two sets of computed deflections
are less than the value of the tolerance selected by the
engineer.

a. Boundary conditions. At the bottom of the pile the
two boundary conditions employed are the shear and the
moment, and both are equal to zero. Thus, a solution can be
obtained for a short pile such that there is a significant
amount of deflection and slope at the bottom of the pile.

417
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Sometimes the question arises about the possibility of forcesat -

the base of the pile due to development of shearing stresses from
the soil when the bottom of the file is deflected. That possibility
can readily be accommodated by placing a p-y curve with
appropriate numerical values at the bottom increment of the pile.
There are three boundary conditions to be selected at the top of
the pile, but one of those, the axial load, provides no specific
information on pile-head deflection. Thus, two other boundary
conditions must be selected. The computer is programmed to
accept one of the following three sets. (The axial load is
assumed to be used with each of these sets).

(1) The lateral load (P, ) and the moment (M, ) at the top of
the pile are known.

(2) The lateral load (P,) and the slope of the elastic curve
(.S, ) at the top of the pile are known.

(3) Thelateral load (P,) and the rotational-restraint constant
(M,/S,) at the top of the pile are known.

The first set of boundary conditions applies to a case such as a
highway sign where wind pressure applies a force some
distance above the groundline. The axial load will usually be
small and a free body of the pile can be taken at the groundline
where the shear and the moment will be known. The second set
of boundary conditions can be employed if a pile supports a
retaining wall or bridge abutment and where the top of the pile
penetrates some distance into a reinforced concrete mat. The
shear will be known, and the pile-head rotation in most cases can
be assumed to be zero. The third set of boundary conditions is
encountered when a pile frames into a superstructure that is
flexible. In some bridge structures, the piles could continue and
form the lower portion of a column. A free body of the pile can
be taken at a convenient point, and the rotational restraint (M,
/S, ) of the portion of the structure above the pile head can be
estimated. The magnitude of the shear will be known. Iteration
between pile and superstructure will lead to improved values of
rotational restraint and convergence to an appropriate solution
can be achieved.

b. U.S. Army Engineer Waterways Experiment Station
(WES) computer program COMG624G (I0012). The method
for solving the govemning equations for the single pile under
lateral loading and the recommendations for p-y curves have
been incorporated into a computer program that is available
from WES. The user is urged to read the documentation that
accompanies the computer diskettes and to solve the examples
that are included. Users are assumed to be engineers who can
understand the importance of verifying the accuracy of any given
solution. Solutions are obtained rapidly to allow the user to
investigate the importance and influence of various parameters.

4-18

For example, upper-bound and lower-bound values of the soil
properties can be input and the outputs compared. This exercise
will give the user an excellent idea of the possible variation of
behavior across a site and may indicate the desirability of
performing a full-scale field test.

¢. Nondimensional method of analysis.

(1) Varnation of soil modulus with depth. Prior to
presenting the details of nondimensional analysis, it is desirable
to discuss the nature of the soil modulus. A pile under lateral
loading is shown in Figure 4-16a and a set of p-y curves is
shown in Figure 4-16b. As shown in the figure, the ultimate
value of p and the initial slope of the curves increase with depth,
as 1s to be expected in many practical cases. Also shown in
Figure 4-16b is the possible deflected shape of the pile under
load and the secants to the point on the curves defined to be the
respective deflection. The values of soil modulus E, so obtained
are plotted as a function of depth in Figure 4-16c. The line
passing through the plotted points defines the variation of E, with
depth. In the case depicted in Figure 4-16, the following
equation defines the variation in the soil modulus.

E, = kx (4-43)
It is of interest to note that neither £ nor k are constants, but each
of them decrease as the load and deflection increase. In many
cases encountered in practice, the value E, would not be zero at
the groundline and would not increase linearly with depth, as
shown in Figure 4-16. However, these are two things that
suggest that equation 4-43 will frequently define, at least
approximately, the variation of the soil modulus with depth.
First, the soil strength and stiffness will usually increase with
depth. Second, the pile deflection will always be larger at and
near the groundline. Furthermore, experience with
nondimensional solutions has shown that it is not necessary to
pass a curve precisely through the soil-modulus values, as is
done by the computer, to obtain an acceptable solution.

(2) Nondimensional equations and curves. The derivation
of the equations for the nondimensional solutions are not shown
here but may be seen in detail elsewhere (Reese and Matlock
1956; Matlock and Reese 1961). The following sections present
the equations and nondimensional curves for three cases: pile
head free to rotate, pile head fixed against rotation, and pile head
restrained against rotation. The nondimensional solutions are
valid only for piles that have constant stiffness £7 and no with
axial load. These restrictions are not very important in many
cases because computer solutions usually show that deflections
and bending moments are only moderately influenced by
changes in E£7 and by the presence of an axial load. Also, the
principal benefits from the nondimensional method are in



checking computer solutions and in allowing an engineer to gain
msight into the nature of the problem; thus, precision is not
required. As may be seen by examining published derivations
(Matlock and Reese 1961), nondimensional curves can be
developed for virtually any conceivable variation in soil modulus
with depth. However, studies show (Reese 1984) that the utility
of some more complex forms of variation
(E; =k, +kx,E, = kx")is limited when compared
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to the simpler form (£, = kx).

d. Pile head free to rotate (Case I). The procedure shown
in this section may be used when the shear and moment are
known at the groundline. A single pile that serves as the
foundation for an overhead sign, such as those that cross a
highway, is an example of the Case I category. The shear and
moment at the groundline may also be known, or computed, for
some structural configurations for bridges.

(a) Pile (b}

p-y curves (c)

Es

Scil modulus

Figure 4-16. Form of variation of soil modulus with depth
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(1) Construct p-y curves at various depths by procedures -

recommended herein, with the spacing between p-y curves
being closer near the ground surface than near the bottom of the
pile.

(2) Assume a convenient value of a relative stiffness factor
T, perhaps 100 inches. The relationship is given as:

T = (_E_f) s (4-44)
k
where
El'=  flexural rigidity of pile
k =  constant relating the secant modulus of soil and

reaction of depth (£, = kx)

(3) Compute the depth coefficient z,,,, , as follows:
max (4-45)
where x,,,. equals the embedded length of the pile.

(4) Compute the deflection y at each depth along the pile
where a p-y curve is available by using the following equation:

y =4 T + B M,T*? (4-46)

¥ EI Y EI

where

A, = deflection coefficient, found in Figure 4-17

P, = shear attop of pile

T = relative stiffness factor

B, = deflection coefficient, found in Figure 4-18

M,=  moment at top of pile

ElI=  flexural rigidity of pile

The particular curves to be employed in getting the 4, and B,
coefficients depend on the value of z,,,, computed in step 3. The
argument for entering Figures 4-17 and 4-18 is the
nondimensional depth z, where z is equal tox /7.

4-20

(5) From a p-y curve, select the value of soil resistance
p that corresponds to the pile deflection value y at the depth of
the p-y curve. Repeat this procedure for every p-y curves that is
available.

(6) Compute a secant modulus of soil reaction E;
(E, = -ply). Plot the E, values versus depth (see
Figure 4-16c).

(7) From the E, versus depth plotted in step 6, compute the
constant £ which relates £, to depth (k = E /x). Give more
weight to E, values near the ground surface.

(8) Compute a value of the relative stiffness factor 7" from
the value of & found in step 7. Compare this value of 7" to the
value of 7 assumed in step 2. Repeat steps 2 through 8 using the
new value of 7" each time until the assumed value of 7 equals the
calculated value of 7.

(9) When the iterative procedure has been completed, the
values of deflection along the pile are known from step 4 of the
final iteration. Values of soil reaction may be computed from the
basic expression: p = E y. Values of slope, moment, and
shear along the pile can be found by using the following
equations:

2
g BT g MT (4-47)
S EI * EI
M=APT+BM (4-48)
M
V- AP, B, (4-49)

The appropriate coefficients to be used in the above equations
may be obtained from Figures 4-19 through 4-24.

e. Pile head fixed against rotation (Case II). The method
shown here may be used to obtain solution for the case where
the superstructure translates under load but does not rotate and
where the superstructure is very, very stiff in relation to the pile.
An example of such a case is where the top of a pile is
embedded in a reinforced concrete mat as for a retaining wall or
bridge abutment.

(1) Perform steps 1, 2, and 3 of the solution procedure for
free-head piles, Case .

(2) Compute the deflection y, at each along the pile
where a p-y curve is available by using the following
equation:



El 02C097
01 Jul 97

5.0

4.0

3.0

-
< .
- ”::W It
= 2.0 .y
2z FEE N
w il f o
S ,
= H
w +
w ‘
o X !
O (
2
© 10
'_ an
o ]
w
-J .
G f t
w i
a T
0 : e "
-10 HH 2
I : 1 ! l%
) 10 20 30 a0 50
DEPTH COEFFICIENT, Z
Y R T3 -
yA:A' (ﬁ) X“Z(T)
Y
i x where T=(EL/k)"
P

Figure 4-17. Pile deflection produced by lateral load at mudline
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Figure 4-18. Pile deflection produced by moment applied at mudline
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PT? (4-50)
£l

yF:Fy

The deflection coefficients F, may be found by entering
Figure 4-25 with the appropriate value of z,,,, .

(3) The solution proceeds in steps similar to those of
steps 5 through 8 for the free-head case.

(4) Compute the moment at the top of the pile M, from
the following equation:
M, = F,,PT 4-51)
The value of F,, may be found by entering Table 4-6 with the
appropriate value of z,,,. , where z,,,. is the maximum depth
coefficient.

Table 4-6
Moment Coefficients at Top of Pile
for Fixed-Head Case

Zpex Fia
2 -1.06
3 -0.97
4 -0.93
5 and above -0.93

(5) Compute the values of slope, moment, shear, and soil
reaction along the pile by following the procedure in step 9
for the free-head pile.

[ Pile head restrained against rotation (Case II]). Case
[1I may be used to obtain a solution for the case where the
superstructure translates under load, but rotation at the top
of the pile is partially restrained. An example of Case III is
when the pile is extended and becomes a beam-column of
the superstructure. A moment applied to the bottom of the
beam-column will result in a rotation, with the moment-
rotation relationship being constant. That relationship, then,
becomes one of the boundary conditions at the top of the
pile.

(1) Perform steps 1, 2, 3 of the solution procedures for
free-head piles, Case 1.

(2) Obtain the value of the spring stiffness k, of the pile
superstructure system. The spring stiffness is defined as
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follows:
ky = M, (4-52)
St
where
M, = moment at top of pile
S, = slope attop of pile

(3) Compute the slope at the top of pile S, as follows:

s -a DT, 5 MT (4-53)
Y ' El
where
A, slope coefficient at z = 0, found in Figure 4-19
B,, = slope coefficient at z =0, found in Figure 4-20

(4) Solve equations 4-52 and 4-53 for the moment at the
top of the pile M, .

(5) Perform steps 4 through 9 of the solution procedure
for free-head piles, Case L.

g Solution of example problem. To illustrate the
solution procedures, an example problem is presented. The
example will be solved principally by the nondimensional
method. The solution, while somewhat cumbersome, yields
an excellent result in the case selected. The nondimensional
method has several advantages: (1) the elements of a
solution are clearly indicated; (2) the method is useful for
practical cases if a computer and the necessary software are
unavailable; and (3) the method is capable of providing a
check to the output of the computer.

(1) Select pile dimensions and calculate ultimate bending
moment (step 1). The pile is an HP 12 by 84 with the load
applied perpendicular to the major axis. The width 1s
12.295 inches and the depth 1s 12.28 inches. The moment
of inertia about the major axis is 650 in.*, the cross-sectional
area 1s 24.6 square inches, and the ultimate bending moment
1s 4,320 inch-kips, assuming a yield strength of the steel of
36 kips per square inch ignoring the effect of axial load. The
length, penetration below the ground surface, is assumed to
be 80 feet.

(2) Study soil profile and idealize soil as clay with ¢ =0

or as sand with ¢ = 0 (step 2). This step would normally
require the evaluation of the results of field exploration and
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Figure 4-19. Slope of pile caused by lateral load at mudline
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Figure 4-24. Shear produced by moment applied at mudline
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laboratory testing, but for the example problem the soil is
assumed to be a sand with an angle of intemnal friction of
35 degrees and with the water table at the ground surface.
The submerged unit weight of the soil is assumed to be 0.04
pounds per cubic inch.

(3) Study soil-response (p-y) curves (step 3). The
procedures described earlier for sand were used and the p-y
curves were developed. For the structural shape, the
diameter of the pile was selected as equal to the width. The
curves are presented in Figure 4-26. The curves are spaced
closer near the top of the pile where deflection is the largest.
If the computer is employed, this step is unnecessary because
the subroutines for the responses of the soil are implemented
in the program. However, the user may have p-y curves
produced for examination, if desired. For the hand solution,
demonstrated herein, the p-y curves are shown in Figure 4-
26. For the curve of the ground surface, zero depth, the p-
values are zero for all values of y. The nonlinearity in the
curves is evident, but it is of interest to note that there is no
deflection-softening for the sand.

(4) Select set of loads and boundary conditions (step 4).
If the computer program, COM624G, is being used, the
engineer may select a set of loads and input the set into the
program. Only a minimum set of output could be specified
for each load;, for example, pile-head deflection and
maximum bending moment. The boundary conditions at the
pile head can also be varied during these computations. The
computer will rapidly produce the results, and the engineer
may monitor the results on the screen and select another set
for more complete output by hard copy and/or graphics. The
deflection and bending moment, and other values, will be
produced for points along the pile. In any case, the plan
should be to find the loading that will generate the maximum
bending moment or the maximum allowable deflection. A
global factor of safety can be used and the results obtained
for the case of the working load. All of the computations
could be by the hand solution except that the axial loading
cannot be included as affecting the lateral deflection and
except that the pile cannot be shown as having different
stiffnesses with depth. In any case, the hand solutions will
be very time-consuming. However, to indicate the analytical
process, a lateral load P, of 30 kips was selected and the pile
head was assumed to be free to rotate. This case might be
similar to one of the piles that support a lock and dam, where
the pile head extends only a short distance into the concrete
base.

(5) Solve for deflection and bending moment (step S).
The first part of this step is to use the method for a hand
solution and to solve for the response of the pile to the
loading and boundary condition shown above. There is little
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information to be used in the selection of the initial value of
the relative stiffness factor 7, so a convenient value is
selected. It is noted that the computations are with units of
pounds and inches, for convenience.

(a) Tral 1
L = 80ft(960in.)
T = 100in.
= LT
Zpex = 960/100 = 9.6; use curves for a “long” pile
Y4 PT® _, _(30,000) (100)}
? EI ¥ (29,000,000) (650)
= 15924,

The computational table should be set up to correspond to
the depths of the p-y curves.

The values of E, are plotted in Figure 4-27a as a function of
x with the result for k as shown below.

k =270/100 = 2.70 Ib/in3

The value of the relative stiffness factor 7" that was obtained
can now be found.

r - | EL | (29x10% (650 in)
X 2.70

93.1 inches

The value of T that was obtained is lower than the one that
was tried. The second trial needs to use a still lower value
to help to achieve a convergence.

It

(b) Trial 2
T = S0inches
Zpee = 960/50 = 19.2; use curves for a “long” pile
Y -4 PT> _  _(30000) (50)°
Y EI ¥(29,000,000) (650)
= 0.1989 4,

The values of E, are plotted in Figure 4-27a as a function of
x with the result for k as shown below.
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Figure 4-26. Soil-response curves
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Depth (in.) z=x/ A, Deflection (in.) Soil Resistance (Ib/in.) E, (Ib/sqin.)
0 0.00 24 3.82 0 0

12 0.12 225 3.58 77 22

24 024 2.0 3.18 165 52

48 048 1.7 27 320 118

72 0.72 1.3 207 625 302

96 0.96 1.0 1.59 1,125 708
120 1.2 0.75 119 - -
168 1.68 0.2 0.32 - -

Deflection Soil Resistance
Depth (in.) z=x/t A, (in.) (Ibfin.) E, (Ib/sq in.)
0 0.00 24 0.477 0 0

12 0.24 20 0.398 75 188

24 0.48 17 0.338 135 399

48 0.96 1.0 0.199 185 930

72 1.44 0.5 0.100 225 2,250

96 1.92 0.15 0.030 - -—
120 240 0.00 0.000 - -
168 3.32 - . - -

k = 1,000/47 = 2128 Ib/in}

The value of the relative stiffness factor 7 that was obtained
can now be found.

r- | EI | (29 x 10%) (650 in*)
X 2128

= 61.6 inches

The values of T obtained are plotted versus 7' tried in
Figure 4-27b. The converged value for T is approximately
84 inches. The reader may see that values for the 4,
coefficients were obtained only approximately from the
curve and that the values for the soil resistance
corresponding to a computed deflection were obtained only
approximately from the Figure giving the p-y curves. Also, there is

no assurance that a straight line is correct between the plotted points
for the two tnals shown in Figure 4-27b. However, for the purposes
of this demonstration no additional trials are made and the result is
accepted as shown. The value of 7" of 84, a value of P, of 30,000
pounds, and a value of 7 of 18.85 x 10° Ib-in? are employed in
obtaining the curves of deflection and bending moment as a function
of depth. The equations are shown below and the computations
merely involve the selection of values from the nondimensional
curves for the depths desired.

PT” 4 _(30,000) (84)°

El ¥(29,000,000) (650)

= 0.943 4,
M=A4,P, T =252x10%in -Ib

y =4,
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Figure 4-27. Graphical solution for relative stiffness factor

4-34




The following table shows the computation of the values of
deflection and bending moment as a function of depth, using
the above equations. The same problem was solved by
computer and results from both methods are plotted in
Figure 4-28. As may be seen, the shapes of both sets of
curves are similar, the maximum moment from the hand
method and from computer agree fairly well, but the
computed deflection at the top of the pile is about one-half
the value from the nondimensional method. One can
conclude that a closed convergence may have yielded a
smaller value of the relative stiffness factor to obtain a
dightly better agreement between the two methods, but it is

El 02C097
01 Jul 97

certain that the two methods could not have been brought
into perfect agreement. An examination of Figure 4-27a
shows that is impossible to fit a straight line through the
plotted values of E, versus depth; therefore, E, = kx will not
yield a perfect solution to the problem, as demonstrated in
Figure 4-28. However, even with imperfect fitting in
Figure 4-27a and with the crude convergence shown in
Figure 4-27b, the computed values of maximum bending
moment from the hand solution and from computer agreed
remarkably well. The effect of the axial loading on the
deflection and bending moment was investigated with the
computer by assuming that the pile had an axia load of

Depth (in.) z A, y (in.) A, M (in. Ib/10°)
0 0.0 2.43 2.29 0.0 0
17 0.2 211 1.99 0.198 0.499
34 0.4 1.80 1.70 0.379 0.955
50 0.6 1.50 1.41 0.532 1.341
67 0.8 1.22 1.15 0.649 1.636
84 1.0 0.962 0.91 0.727 1.832
101 1.2 0.738 0.70 0.767 1.933
118 1.4 0.544 0.51 0.772 1.945
151 18 0.247 0.23 0.696 1.754
210 25 -0.020 -0.02 0.422 1.063
252 3.0 -0.075 -0.07 0.225 0.567
294 35 -0.074 -0.07 0.081 0.204
336 4.0 -0.050 -0.05 0.0 0

100 kips. The results showed that the groundline deflection
increased about 0.036 inches, and the maximum bending
moment increased about 0.058 x 10° in-lb; thus, the axia
load caused an increase of only about 3 percent in the values
computed with no axial load. However, the ability to use an
axial load in the computations becomes important when a
portion of a pile extends above the groundline. The
computation of the buckling load can only be done properly
with a computer code.

(6) Repeat solutions for loads to obtain failure moment
(step 6). Asshownin the statement about the dimensions of
the pile, the ultimate bending moment was incremented to
find the latera load P, that would develop that moment. The

results, not shown here, yielded an ultimate load of 52 kips.
The deflection corresponding to that load was about
3.2iinches.

(7) Apply global factor of safety (step 7). The selection
of the factor of safety to be used in a particular designisa
function of many parameters. In connection with a particular
design, an excellent procedure is to perform computations
with upper-bound and lower- bound values of the principal
factors that affect a solution. A comparison of the results
may suggest in aparticular design that can be employed with
safety. Alternatively, the difference in the results of such
computations may suggest the performance of further tests
of the soil or the performance of full-scale field tests at the
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construction site.
5. Status of the Technology

The methods of analysis presented herein will be improved
in time by the development of better methods of
characterizing soil and by upgrading the computer code. In
this latter case, the codes are being constantly refined to
make them more versatile, applicable to a wider range of
problems, and easier to use. From time to time tests are
being performed in the field with instrumented piles. These
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tests, when properly interpreted, can lead to better ideas
about the response of the soil. However, it is unlikely that
there will be much changein the basic method of analysis.
The solution of the difference equations by numerical
techniques, employing curves at discrete locations along a
pile to represent the response of the soil or distributed
loading, is an effective method. The finite element method
may comeinto more use in time but, at present, information
on the characterization of the soil by that method is
inadeguate.
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Figure 4-28. Comparison of deflection and bending moment from
nondimensional and computer solutions
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