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Introduction
esponse actions are normally
driven by risk, and the risks posed
by underwater munitions (e.g., sea
disposal sites) remain largely un-
known as studies to understand the
potential risks associated with under-
water munitions are still in their in-
fancy. From an explosives safety
perspective, the Department of De-
fense (DoD) believes that leaving
underwater munitions in place is nor-
mally the safest course of action.
Thus, it is unlikely that munition re-
sponses requiring the recovery of un-
derwater munitions will occur in the
near future. Only imminent and sub-
stantial threat to human health and
the environment will warrant action.
Regardless of the need for such ac-
tion, it is useful to be familiar with
available technologies for underwater
munition responses. Understanding
of these technologies is not wide-
spread within the unexploded ord-
nance (UXO) clean-up industry, and
their specific capabilities and limita-
tions within the context of a munition
response are unclear. This article iden-
tifies the technologies available for
underwater munition responses and
attempts to explain the requirements
of successful operations.

ABSTRACT

Studies to understand the potential risks associated with underwater muni-
tions are still in their infancy. Response actions are normally driven by risk. From
an explosives safety perspective, the Department of Defense believes leaving under-
water munitions in place is often the safest course of action. Additionally, the risks
posed by underwater munitions (e.g., sea disposal sites) remain largely unknown.
Thus, it is unlikely that munition responses requiring the recovery of underwater
munitions will occur in the near future. The exception is where such munitions
are determined to pose an imminent and substantial threat to human health and
the environment.

This article discusses technologies that can be used to characterize under-
water munition sites, including bounding the site and sampling for any release
of munition constituents. It also addresses technologies that can be used
for recovery operations and for the disposal of any munitions. Navigation and
underwater positioning are integral to all of these operations and are discussed

separately.

The DoD munition response ac-
tions typically follow the Compre-
hensive Environmental Response,
Compensation, and Liability Act
(CERCLA) management framework,
and it is within this framework that
response operations are normally per-
formed. A munition response is de-
fined as response actions, which
include site characterization and re-
moval actions and remedial actions
to address explosives hazards, human
health risks, or environmental risks.
A response action can also be a deter-
mination that no removal or remedial
action is required. The site character-
ization phase generally includes three
steps: a site inspection, a remedial in-
vestigation, and a feasibility study.
The site characterization phase as-
sesses potential hazards and risk to
human health and the environment.
If unacceptable, a removal or remedial
response is designed to mitigate the
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hazards or risk. Removal responses
are short-term actions to mitigate im-
mediate hazards and risk. A remedial
response is the final remedy for a con-
taminated site. Removal and remedial
response actions can range from insti-
tutional controls (e.g., use restrictions,
education programs) to clean-up of
UXO, discarded military munitions
(DMM), or munition constituents.
Munition constituents are any materi-
als including explosives and metals
originating from munitions. When a
response action includes munitions
disposal, the munitions must be lo-
cated, identified, and disposed. The
disposal may take the form of detona-
tion in place or recovery with a prede-
termined final disposition.

With the exception of a few emerg-
ing technologies that can detect the
presence of explosives, almost all avail-
able detection technologies focus on
detecting the presence of metallic



anomalies that could be munitions.
For this reason, all common detection
technologies are essentially metal de-
tectors. Such commonly available de-
tectors cannot positively discriminate
buried munitions from cultural debris
(e.g., nails, pipes). This remains true
when these technologies are adapted
for underwater detection. Other tech-
nologies (e.g., sonar arrays) have lim-
ited capabilities to detect underwater
munitions but can help identify possi-
ble targets or disposal sites.

This article discusses technologies
for six distinct operations in the se-
quence they are likely used as a muni-
tion response site advances through
the CERCLA process. These six opera-
tions are mapping to understand the
underwater operational environment,
mapping to detect munitions, inspect-
ing and identifying targets that may be
munitions, removing identified muni-
tions from the water bottom, dispos-
ing of the munitions, and sampling
for munition constituents in the water
column and sediments. Navigation and
underwater positioning are integral to
all of these operations and are discussed
separately.

The safety of response workers,
supporting personnel, and the public
is a primary concern for any operation
where interaction with munitions is
planned or has the potential to occur.
Whenever the DoD undertakes activi-
ties that involve the intentional con-
tact with munitions or could lead to
an inadvertent encounter with muni-
tions, the activity must comply with
specific requirements of DoD 6055.9-
STD, DoD Ammunition and Explo-
sives Safety Standards (DoD, 2008).

Environmental Surveys
Once archival research is complete,
the initial focus for assessing an under-

water munitions site is bounding of
the site (i.e., defining the boundaries
and developing knowledge of the mu-
nitions present) and defining the un-
derwater environment (e.g., depth,
bottom type, current). Defining the
underwater environment can be con-
sidered equivalent to a site visit and
helps identify technologies and design
the response for the site.

An understanding of the opera-
tional environment, the capabilities,
and limitations of available technolo-
gies, as well as those of response per-
sonnel can help mitigate or avoid
incidents (e.g., equipment damage or
loss, personnel injuries) and help
quantify performance expectations.
Environmental surveys provide infor-
mation that help bound the size of
the area to investigate and aide in
evaluating detection technologies to
provide an optimum approach for
the specific site. Multi-beam sonar,
side scan sonar, and sub-bottom pro-
filing identify water bottom topogra-
phy, locations of obstructions, and
sediment thickness. Other technol-
ogies may also be used for specific
tasks and include video tow, high-
frequency imaging sonar, and syn-
thetic aperture sonar (SAS).

Side scan and multi-beam sonar
provide information about bottom
conditions and identify potential tar-
gets or disposal areas. This information
provides a basis for planning follow-on
activities that will detect, identify, and
inspect underwater munitions, as well
as help plan any required removal or
remedial actions. The usefulness of
these technologies is somewhat de-
pendent on the level of resolution
provided and the ability of analysts to
interpret the data. Data fidelity can be
enhanced by understanding the capa-
bilities and limitations of the systems
used and using multiple, complemen-

tary systems. The limitations of com-
mercial sonar to reliably detect mu-
nitions would normally preclude
using sonar data alone as a means of
verifying the presence of munitions
in a given area, but they can provide
important information when the
munitions are proud.

Detecting Munitions
Geophysical technologies detect
metallic objects on or beneath the sea
floor. The ability to classify an anom-
aly as a munitions or not is a continu-
ing challenge. (Bell, 2002; SERDP,
20006; U.S. Army Engineering and
Support Center, 2006; Billings et al.,
2008; O’Neil, 2007). Magnetometers
and electromagnetic induction (EMI)
technologies detect the metallic compo-
nents of munitions. In-situ ion mobility
spectrometry, gas chromatograph-
mass spectrometry, and amplifying
fluorescent polymer technologies are
developmental technologies that may,
one day, provide the capability to de-
tect explosives compounds in water.
Buried object scanning sonar is a new
technology in advanced stages of re-
search and development that is designed
to identify metallic and non-metallic
objects that are partially or completely
buried. It has successfully detected
81-mm and 4.2-inch mortars buried
in sand to 30 cm in preliminary testing.
Sonar technologies such as SAS,
multi-beam, and side scan can, in
theory, be used to locate and identify
munitions, but their ability to do so re-
liably remains mostly untested. Some
side scan sonar tests have demonstrated
that the technology can image cylindri-
cal objects the size of 6-inch naval
rounds and larger but could not do
so reliably (U.S. Army Engineering
and Support Center, 2006). At sites
where bottom conditions (mud,
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muck) suggest munitions burial, use of
low frequency, bottom penetrating
sonar can aide in determining whether
buried munitions are part of the prob-
lem if they are large enough to be im-
aged by the system used.

Table 1 summarizes technology
capabilities and lists representative
commercial off-the-shelf (COTS) and
government off-the-shelf systems and
their relative deployment costs. This
table provides a limited overview of
publicly available information and in-
formation obtained from inquiries to
vendors. The information in Table 1
was collected for the U.S. Army
Corps of Engineers to document tech-
nologies available for underwater
munitions operations. (U.S. Army
Corps of Engineers, 2009)

Figure 1 shows underwater metal
detection technologies as applied to
munitions detection.

EMI and magnetometer sensors
designed for marine work do not re-
quire any specific modifications to
detect munitions. Considerations
include sensor selection, platform de-
sign, survey speed, and detection capa-
bility of the sensor with respect to the
size of the munitions of interest. Sys-
tems designed to be towed along the
sea floor also need to consider site-
specific conditions such as topography,
bottom type, and obstacles. Flown sys-
tems need to manage and record the
height of the sensor above the sea
floor to assess sensor detection perfor-
mance. EMI and magnetometer de-
tection performance is primarily a
function of the separation between
the sensor and the metallic item. The
performance of many EMI and mag-
netometer systems is well understood
(SERDP, 2006; Foley, 2006; Nelson,
et al., 2008).

Figure 2 shows an example of
EM61 MK2 detection performance

for a 155-mm projectile. Recent re-
search (Shubitidze, 2009) demon-
strates that EMI performance in fresh
and salt water is the same as it is on
land. It is important to note that, for
typical Geonics EM61-MK2 noise
levels of 1 to 2 mV, the EMI coil can
be no more than about 2 m above
the 155-mm projectile for reliable
detection.

Positioning towed metal detectors
or diver-deployed units also presents
a challenge and must factor whether
the data will be used simply to estimate
anomaly densities in a given area or de-
termine whether detected anomalies
will require subsequent investigation
or removal or disposal actions. Thus,
early discussions with stakeholders
are critical to establish mutually ac-
ceptable survey parameters given that
sites can range from a few acres to
hundreds of square kilometers and
may contain hundreds of thousands of
munitions, as illustrated in Figure 3.
Instrument positioning is discussed
separately.

At present, requirements to detect
underwater munitions are few, and
therefore industry’s use is low, and
cost and performance data are very
limited. Current utilization data sug-
gest that underwater mapping for mu-
nitions, on a per line-kilometer basis,
costs between 1.5 times and 5 times
more than comparable land-based
mapping operations but includes costs
for environmental surveys not typically
required for land.

Inspecting and

Identifying Munitions
Inspecting and identifying under-

water munitions generally equate to

putting eyes on the target. Although

trained experts can normally determine

whether a detected piece of metal is a
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munition, positive identification of a
munition and its configuration, in-
cluding its fuzed state, can often be
made difficult by deterioration or
encrustation by sea life. To make as
complete identification as possible,
munitions experts must be able to
view the item without unnecessary
risk. Use of video equipped remotely
operated vehicles (ROVs) or autono-
mous underwater vehicles (AUV5s)
provides a safe method of placing
“eyes on target” for targets at most
depths. For very shallow water, divers
may prove to be the best means; how-
ever, diving in and of itself increases
the risks involved.

Diver inspection is the simplest and
most versatile method as it puts a
trained expert in direct proximity of
the item of interest. This comes with
the cost of having a full dive team
on-site, limitations of diver bottom-
time, and swimming speed. If there is
one item of interest at a shallow depth,
divers may be the most effective ap-
proach. However, if there are numer-
ous items of interest or deeper water,
the effectiveness of divers decreases.
ROV inspections sacrifice some agility
around the target but benefit from sig-
nificantly reduced personnel risk, sim-
ple deployment, and the ability to
operate around the clock. For practical
purposes, micro-, mini-, and general-
class ROVs are most likely to be used
because they offer versatile deploy-
ment from vessels of opportunity and
provide both real-time video feeds and
limited grabber capabilities. Light work
and heavy work class ROVs might be
deployed in situations where inspec-
tion and removal could take place
at the same time. This technology
might also be used when large quanti-
ties of munitions must be addressed;
however, such use would be expected
to require substantially larger support
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FIGURE 1

Underwater metal detecting sensors. The top
image is an array of three electromagnetic
induction sensors. The bottom three images
show different configurations of magnetome-
ter arrays. All are vessel-towed platforms.

resources and longer deployments.
To date, only one such deployment,
which will assess commercially avail-
able technology adapted for the

remote recovery of munitions, is

FIGURE 2

EM61-MK2 sensor performance fora 155-mm
projectile. The blue line marks the lowest
predicted sensor response for horizontally ori-
ented (i.e., lying flat) 155-mm projectiles. The
red line marks the highest predicted response
for vertically oriented 155-mm projectiles.
When the item is buried at a given depth, the
predicted response will be between these two
curves. The black crosses are measurements
taken over 155-mm projectiles in various
orientations at carefully measured depths,
and validate the predicted responses.
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FIGURE 3

Estimate of the extent and density of muni-
tion contamination in Lake Erie associated
with the Former Erie Army Depot. These
data suggest that approximately 300,000
anomalies could potentially be associated
with munitions in an area encompassing
approximately 8,000 acres. (source: McDonald,
2007).
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planned off the coast of Waianae,
Hawaii.

AUV costs are decreasing and may
become economically viable alterna-
tives to divers or ROVs. A recent
trade-off study performed as part of a
Strategic Environmental Research
and Development Program research
project (Foley, 2006) divided AUVs
into five general classes based on op-
erating mode (hovering, gliding) or di-
ameter. The 22 (9 inch), 30 (12 inch),
and 53 cm (21 inch) diameter AUV
classes, summarized in Table 2, are fea-
sible for munition inspections.

Removing Munitions
Specific circumstances factor in de-
ciding if munitions must be removed,
and if so, what methods and technolo-
gies would be cost efficient and would
ensure safety for personnel and the sur-
rounding environment. Munitions are
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only removed by necessity of the re-
sponse action, when they are safe to
move, and when they are to be trans-
ported for immediate disposal else-
where or for storage for future
disposal. When the risk of movement
is not acceptable, a decision must be
made whether the munitions is to be
disposed in place or left in place.
There are four key criteria for select-
ing a recovery technology: (1) complying
with applicable safety and environ-
mental requirements, (2) meeting oper-
ational capabilities, (3) developmental
stage, and (4) cost. Under the National
Defense Center for Energy and Envi-
ronment, recovery technologies were
identified and researched. Table 3 sum-
marizes several technologies that can be
used to remove underwater munitions.
The process of removing under-
water munitions can be complex and
expensive. It involves complicated op-
erations, requires trained operators,
and must be safe for the workers, the
public, and the environment. Because
every site is unique, removal operations
are also unique, often posing different
challenges that must be addressed.
Some site characteristics to consider
include the number and type of mu-
nitions, the munitions configuration
(i.e., whether the munitions are fuzed
and armed), the munitions condition
(e.g., deteriorated, encrusted by sea
life, buried in full or part), geologic
characteristics of the sea floor (sandy,
rocky, etc.), operational environment
(the water’s depth, visibility, wave ac-
tion, currents, wind), and the need to
protect the marine habitat and threat-
ened or endangered species. These
characteristics drive site-specific op-
erational requirements for recovery
technology, as well as the safety consid-
erations for people and the environ-
ment. The DoD emphasizes the use
of remotely operated technologies



TABLE 2
AUV tradeoff study (Foley, 2009).

9 Inch 12 Inch 21 Inch
Standard depth rating (m) 100 300-1,500 3,000
Length (cm) 165 335 356
Mass (kg) 62 159 183
Top speed (m/s) (kts) 2.57 (5) 2.57 (5) 2.57 (5)
Average speed (m/s) (kts) 1.54 (3) 1.54 (3) 1.8 (3.9)
Endurance at average speed (hours) 20 24 30
Launch and recovery System required N Y Y
Available Modular Sensors
Doppler velocity log (DVL) Standard Standard Standard
Side scan sonar (SSS) Y Y Y
Front looking sonar (FLS) Y Y Y
Low light video Y Y Y
Still camera with lights Y Y Y
Sub-bottom profiler Y
Fluorometers Y Y
Conductivity, temperature, depth (CTD) Y Y

because, as a rule, their use greatly in-
creases safety and operations can nor-
mally proceed around the clock.
Although there is limited experi-
ence with recovering underwater
munitions, land-based munition re-
sponses, which have been performed
for over 15 years, provide information
that can be used to help guide under-
water recovery operations. Munition
sites where over the side disposal oper-
ations were conducted and sites used as
proofing ranges, such as Ordnance Reef
in Hawaii and the Former Erie Army
Depot, respectively, are likely to have
large numbers of unfuzed munitions
spread over large expanses of the water
bottom. The challenges for such sites
are selecting highly maneuverable tech-
nologies and designing recovery and
supporting operations capable of effi-
ciently managing large numbers of
munitions. The challenge at former
live fire training ranges is the potential

presence of UXO that poses imminent
explosive hazards. The number of
UXO in these ranges is likely much
lower compared to the numbers of
DMM in disposal areas. One added
difficulty is the likelihood the UXO
is commingled with very large quanti-
ties of fragments from munitions that
functioned properly. In these scenar-
ios, the recovery technology should
be highly maneuverable and removal
operations must be designed to address

the hazards posed by UXO.

Disposing of Munitions
The recovery of underwater mu-
nitions does not, of itself, resolve any
associated explosive safety hazards.
Once recovered, these munitions must
be disposed of in a safe and environmen-
tally friendly manner, which may in-
clude open detonation. Disposing of
recovered munitions can be difficult to

plan because a number of factors must
be considered, including worker and
public safety, disposal location, and
disposal method. When the disposal
method makes use of a barge or ship,
the disposal process can become more
complex. Disposal operations must com-
ply with applicable federal and state laws
and regulations, as well as applicable
DoD and Service policies, including
the DoD Ammunition and Explosives
Safety Standard (DoD, 2008).
Blow-in-place (BIP) and consoli-
dated shots do not involve removing
and recovering munitions and are the
most common disposal practices. A
consolidated shot is similar to BIP ex-
cept numerous munitions are disposed
at the same time and at the same loca-
tion. BIP and consolidated shots are
selected when it is unsafe to move mu-
nitions or unsafe to transport them
large distances or to off-site disposal
locations. These options destroy mu-
nitions using a donor explosive charge
placed immediately on or adjacent to
the munitions. These disposal techni-
ques have inherent hazards associated
with them as they expose workers to
explosives during the disposal opera-
tion. However, BIP and consolidated
shots put the disposal crew in full con-
trol of the donor explosive and its
detonating sequence during the entire
disposal operation. It must be stressed
that BIP and consolidated shots are
generally the safest disposal methods
because they expose the smallest num-
ber of workers to explosive hazards for
the shortest amounts of time. They
do, however, also have the greatest
potential to harm the underwater eco-
system because of blast effects. To ad-
dress this concern, a recent study
performed by the Space and Naval
Warfare Systems Center (Wild, 2009)
demonstrated that bubble curtains sig-
nificantly reduce blast pressures outside
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the curtains. Additionally, National
Defense Canada uses bubble curtains
to mitigate blast effects when disposing
of underwater munitions using BIP.
Controlled or explosive detonation
chamber technology provides relatively
new capabilities that are now available
in the commercial market. Such tech-
nologies include chambers specially
designed to contain the blast and frag-
mentation from munitions placed and
detonated inside the chamber. Some
such technologies are designed to con-
tain and subsequently neutralize any
releases. Japan is using contained tech-
nology for the destruction of munitions
recovered from Kanda Harbor, Japan.
During these operations, Japan has dis-
posed of thousands of World War II-era
discarded chemical munitions recovered
from the harbor floor (Hayashi, 2009).
Because few underwater munition re-
covery operations have been conducted
in U.S. coastal waters, controlled or
contained technology has not yet been
used to support such operations. How-
ever, this technology could be mounted
on a barge to dispose of munitions re-
covered from the sea floor. Because
contained detonation chambers are
only rated to handle specific net explo-
sive weights, larger munitions may
need to be reduced in size using other
technologies (e.g., water-jet cutting).

Other Options for
Munition Response

Disposal and Management

Less common is the low-order
BIP, which challenges munitions us-
ing an explosive jet-perforator, and
water-jet cutting. The former has been
tested and shown success in igniting ex-
plosives within the munitions without
causing a full high-order detonation
(i.e., explosion) (Pederson, 2002), al-

though its use beyond the demonstra-
tion testing is unknown. Water-jet
cutting is performed on a production
basis on a limited number of land
sites, and a single underwater COTS
system was identified from a United
Kingdom firm. Its use is undocumented
in the United States.

Capping (e.g., entombment with
cement, covering with riprap) is not a
disposal technology but helps prevent
human contact and serves to reduce
any potential interaction between peo-
ple and underwater munitions. Cap-
ping mitigates but does not remove
or eliminate any potential explosive
hazards. Additionally, it does not
address the potential impact from mu-
nition constituents that may be re-
leased into the marine environment,
although some new approaches are
being developed that may address
such releases.

Remediation of munition consti-
tuents has not been a significant
concern to date. As more sites are
investigated, and should unaccept-
able risks be identified, it may become
important. Two potential in-situ re-
medial technologies have been iden-
tified. One promotes rapid, in-situ
chemical degradation of munition
constituents into benign breakdown
products. The other employs micro-
bial mats, which are complex commu-
nities of bacteria and algae that use
photosynthesis to degrade munition
constituents. These technologies are
currently only conceptual for their
potential applicability to underwater
munition response and have yet to
be demonstrated or validated in un-
derwater environments. Dredging is
the only other alternative that can re-
move sediments contaminated with
munition constituents. Dredging
technologies are summarized in

Table 3.

Sampling for
Munition Constituents
Sampling for munition constitu-
ents is usually performed after an
area has been identified with muni-
tions on or beneath the sea floor. Col-
lecting water and sediment samples at
shallow depths is straight forward, and
technologies for doing so are well es-
tablished; however, collecting samples
from a deep-water site where sampling
at a set distance from munitions or
munition clusters is much more com-
plex. Water-column and ponar grab
samplers are common and can very
quickly collect water or sediment for
sampling and shipment to laboratories
for off-site analyses. Some ROV-
mounted sampling systems do exist
but are not common. Gravity coring
and vibracoring are also mature tech-
nologies and can collect sediment
cores of several meters to 10 m or
more in length. Gravity and vibracor-
ing require a crane or hoist to lift the
systems as well as being capable of pull-
ing the core from the sediment.
In-situ sampling is limited to sam-
pling water, and three types of systems
are known: ion mobility spectroscopy,
gas chromatograph-mass spectrometry
(GC-MS), and amplifying fluorescent
polymer (AFP). All three detect explo-
sive compounds and rely on explosive
molecules emanating from the muni-
tions into the surrounding water.
COTS systems are not yet readily
available, but several AFP systems
and one GC-MS are in use. Informa-
tion on the theory and mobility of
trace explosives chemicals is available

(Woodfin, 2007).

Navigation and

Underwater Positioning
Knowing where sensors take mea-
surements and getting divers, ROV,
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or AUVs back to a specific spot on
the water bottom are critical aspects
of underwater munitions operations.
The challenge is to accurately locate
where anomalies are detected and
then return to the anomaly locations.
Positioning errors from each phase of
work are additive through the se-
quence of operations, starting with
the geophysical mapping, followed
by selecting targets of interest, and
then reacquiring those targets for in-
spection, removal, or disposal. Differ-
ential global positioning systems
(GPS) or real-time kinematic GPS
are very common for vessel position-
ing and navigation, but GPS does
not operate underwater and cannot
be used directly to locate underwater
sensors, divers, or platforms. Land-
based operations are usually designed
to minimize total positioning errors to
between 50 cm and 1 m. Larger er-
rors, particularly when working in
areas of high concentrations of clutter

TABLE 4

(e.g., fragments of functions muni-
tions), significantly drive up clean-up
costs and, if not controlled, can re-
duce the certainty that all munitions
are actually recovered. Some commer-
cial underwater positioning systems
deliver accuracies of about half a
meter to a meter in shallow water. Ac-
curacies of several tens of meters are
typical in deep waters.

Lay-back, long baseline (LBL), or
ultra-short baseline (USBL) acoustic
positioning, inertial navigation sys-
tems, and Doppler velocity logs are
common for underwater positioning
and navigation. Table 4 summarizes
demonstrated positioning accuracies
for some of these technologies in a
controlled environment at Aberdeen
Proving Ground in 2005 (U.S. Army
Environmental Quality Technology,
2000).

All individual components of any
given system have inherent accuracy
errors that can be quantified and min-

imized through planning and design.
It is critical to understand capabilities
and limitations of all components de-
ployed during munition response pro-
jects, and it is equally important to
design tests that demonstrate if ex-
pected accuracies are being met.

Conclusions

There is a need to recognize that
numerous technology options are
available to meet project needs during
each phase of the response process.
Some of these technologies are well
understood, available on the commer-
cial market, and easily deployed to
address operational requirements.
However, some technologies have
only recently been applied in locating
and defining the boundaries of muni-
tion response sites and determining
the potential hazards posed from un-
derwater munitions, and the DoD
and industry are still learning how

Summary of estimated precisions and estimated accuracies for marine positioning systems (modified from U.S. Army Environmental Quality

Technology, 2006).

Positioning System

Deployment Conditions

Estimated Precision®

Estimated Accuracy®

Lay-Back (e.g., MagLogNT Interpolator
or MagMap2000)

Fixed array (e.g., hard-mounted to
vessel), no waves

Typical: 2 to 5 cm

Typical: 10 to 20 cm

Range: 0 to 10 cm

Not determined

Lay-Back (e.g., MagLogNT Interpolator)

Towed array, no waves

Typical: 5 cm

Typical: 25 cm

Range: 0 to 10 cm

Range: 0 to 50 cm

Lay-Back (e.g., MagLogNT Interpolator)

Towed array, simulated waves

Typical: 15 ¢cm

Typical: 35 ¢cm

Range: 0 to 25 cm

Range: 0 to 70 cm

USBL (e.g., ORE Trackpoint Il Plus)

Towed array, no waves

Typical: 35 ¢cm

Typical: 25 ¢cm

Range: 15 to 60 cm

Range: 0 to 50 cm

USBL (e.g., ORE Trackpoint Il Plus)

Towed array, simulated waves

Typical: 50 cm

Typical: 60 cm

Range: 20 to 80 cm

Range: 20 to 1 m

LBL (e.g., AquaMap)

Towed array, no waves

Typical: 10 cm

Typical: 15 to 50 cm

Range: not determined

Range: not determined

3Precision in this report is defined as point-to-point relative precision.
PAccuracy in this report is defined as the accuracy of an interpreted anomaly’s location compared to its actual source location, in geographic coordinates.
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to optimize these technologies for
munition-specific applications. Lastly,
DoD-funded research and develop-
ment are delivering new products to
detect, remove, and safely dispose of
underwater munitions.
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